2.7 N 3.5 N 5 Is Divisible By 24. Transcript Example 6 Prove that 27n + 35n 5 is divisible by 24 for all nN Introduction If a number is divisible by 24 48 = 24 2 72 = 24 3 96 = 24 4 Any number divisible by 24 = 24 Natural number Example 6 Prove that 27n + 35n 5 is divisible by 24 for all nN.
Let P (n)27 We note that P (n) is true when n=1 since 27+35−5=24 which is divisible by 24 Assume that P (k) is true Now we have to prove that P (k+1) is true whenever P (k) is true The expression on the RHS oof ( 1 ) is divisible by 24 Thus P (k+1) is true whenever P (k) is true Hence by principle of mathematical induction P.
Example 6 Prove that 2.7n + 3.5n 5 is divisible by 24
So according to the principle of mathematical induction ${27^n} + {35^n} 5$ is divisible by 24 Hence proved Note – Mathematical induction is a mathematical technique which is used to prove a statement a formula or a theorem is true for every natural number.
Prove that ${2.7^n} + {3.5^n} 5$ is divisible by 24 for all
Solution For Prove that {27^n} + {35^n} 5 is divisible by 24 for all n \in N Class 11 Math Algebra Principle of Mathematical Induction.
Auricular Point Acupressure Combined With Compound Lidocaine Cream To Manage Arteriovenous Fistula Puncture Pain A Multicenter Randomized Controlled Trial
Prove that 2.7 3.5 5 n n is divisible by 24 for all n N
+ {3.5^n} by 24 for Prove that {2.7^n} all n 5 is divisible
Prove that 2.7^n + 3.5^n 5 is divisible by 24 for all n ∈ N
Click here????to get an answer to your question ️ Prove that 27^n + 35^n 5 is divisible by 24 for all n ∈ N .